Register for our webinar

How to Nail your next Technical Interview

1 hour
Loading...
1
Enter details
2
Select webinar slot
*Invalid Name
*Invalid Name
By sharing your contact details, you agree to our privacy policy.
Step 1
Step 2
Congratulations!
You have registered for our webinar
check-mark
Oops! Something went wrong while submitting the form.
1
Enter details
2
Select webinar slot
*All webinar slots are in the Asia/Kolkata timezone
Step 1
Step 2
check-mark
Confirmed
You are scheduled with Interview Kickstart.
Redirecting...
Oops! Something went wrong while submitting the form.
close-icon
Iks white logo

You may be missing out on a 66.5% salary hike*

Nick Camilleri

Head of Career Skills Development & Coaching
*Based on past data of successful IK students
Iks white logo
Help us know you better!

How many years of coding experience do you have?

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
Iks white logo

FREE course on 'Sorting Algorithms' by Omkar Deshpande (Stanford PhD, Head of Curriculum, IK)

Thank you! Please check your inbox for the course details.
Oops! Something went wrong while submitting the form.
closeAbout usWhy usInstructorsReviewsCostFAQContactBlogRegister for Webinar
Our June 2021 cohorts are filling up quickly. Join our free webinar to Uplevel your career
close

Want to Work in Machine Learning? [2023 Career Guide]

Last updated by Utkarsh Sahu on Aug 30, 2024 at 05:04 PM | Reading time: 8 minutes

The jobs in the sector of Computer and Information are expected to grow by 23% till the year 2032, according to the report by BLS. LinkedIn India further indicates more than 13,000 jobs for Machine Learning in India. With such intriguing prospects, won’t you want to give machine learning a try? Here is a guide to Machine Learning career curated specifically for beginners or those looking for a career switch.  

Here’s What We’ll Cover in this Article:

  • Machine Learning Career Path
  • Relevant Skills for Machine Learning Career
  • Machine Learning Jobs and Salary
  • Machine Learning Transition From Technical and Non-Technical Fields
  • Frequently Asked Questions on Machine Learning Engineer Career

Machine Learning Career Path

Career transition to Machine Learning from a different background requires time and will. Depending on one’s prior profession, one might be required to begin learning from basics, or one can be already proficient with core requirements and may wish to learn the new introductions.

Machine Learning Career Path

Begin with Basics:

Gain familiarity with machine learning and deep learning concepts through online or offline mode, as per the suitability of your current job. Work to gain proficiency in programming, which is significant for the candidate's option for IT roles. However, non-IT roles do not necessarily require it. The knowledge of concepts like linear algebra, calculus, probability and statistics is important for facing hypothesis-based tasks, testing and other such works.

Move Towards Advanced:

The previously mentioned are basic requirements. Coming towards specific ones in Machine Learning, one should be familiar with working on data. Further, one must also be able to handle unstructured data with the ability to model and evaluate. Machine Learning algorithm is the base of Machine Learning. Hence, information on supervised, unsupervised and reinforcement algorithms and their sub-types is crucial before stepping into the real world to work on projects.

Practice through Machine Learning Projects:

Working on Machine Learning projects is the best way to apply your knowledge efficiently and creatively to overcome problems commonly encountered in the profession. It gives an opportunity to get familiar with the recruiter’s and the organization’s expectations. Gaining practical application of gained knowledge is possible through the Rossmann Store Sales Project, Zillow Home Value Prediction ML project and similar others.

Get a Specialization:

Machine Learning encompasses a wide number of choices through specializations. Be it computer vision, natural language processing or any other, an informed choice helps focus your attention and energy in a specific direction.

When aiming for machine learning positions at top tech companies, our Machine Learning Course has you covered with the ultimate interview prep recipe!

Enroll in Advanced Courses:

The competitive world might give you a hard time landing the jobs of choice. Practical experience through internships, when coupled with advanced courses, will help you understand your career approach, your area of interest and confidence for paving a new path or opportunities.

Collaborate and Network:

The action should be taken from the beginning of choosing Machine Learning. Interact with professionals for guidance and insights into the chosen field. Network to remain updated about the trends and opportunities.

What do Experts Say?

“Machine Learning and deep learning will create a new set of hot jobs in the next 5 years.”

-Dave Waters

Relevant Skills for Machine Learning Career

Entering a new field requires the presence of a specific set of skills critical to that field. The skills of relevance in the machine learning engineer career path are:

Technical Skills

  • Programming languages: Python
  • Mathematics and Statistics: Linear algebra, hypothesis testing, probability, calculus
  • Machine Learning Algorithms: Supervise, unsupervised, reinforcement and deep learning
  • Deep Learning: Neural Network Architectures such as Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN) and transformers.
  • Frameworks: TensorFlow, PyTorch and others relevant to your area
  • Data preprocessing: Clean, preprocess and transform data for machine learning tasks.
  • Model evaluation and validation: Model performance through ROC curves, cross-validation and metrics like accuracy, precision, recall and F1-score.
  • Machine Learning Libraries and Tools: Scikit-learn, LightGBM, XGBoost, Jupyter notebooks and data visualization libraries such as Seaborn and Matplotlib.

Soft Skills

  • Problem-solving: To meet unannounced and novel challenges during tasks with a strong knowledge of concepts and the right mindset
  • Communication skills: For efficient communication in both verbal and written manner
  • Teamwork: For effective workability with team members of different groups
  • Domain knowledge: Familiarity with the domain you are working in for efficient results
  • Continuous learning: Constant advancements require regular updates with updated versions of technologies, tools and frameworks
  • Project management: For effective planning and execution of machine learning projects

Machine Learning Jobs and Salary

The designation Machine Learning Engineer can expect to earn between INR 7 lakhs to 16 lakhs. The average base pay is approximately INR 10 lakhs per year. Candidates can also expect additional cash compensation ranging between INR 32,000 to 3,48,000. The average expectation should lie at INR 1,57,500.

Heading over to foreign nations, Indians can also explore the job opportunities there. The salary range in some of the commonly chosen nations is:

Machine Learning Transition From Technical and Non-Technical Fields

Machine learning career transition is possible regardless of the candidates' background. The technical background holders are expected to hold experience in programming languages and computer fundamentals, which makes the candidates ahead of candidates unfamiliar with such concepts. The edge helps you smooth the career transition curve. To brush up on these skills, you need to ace up the transition process with data handling and learning about the algorithm and frameworks.

Candidates from non-technical backgrounds can opt for either IT or non-IT sector. After the choice, depending on your passion, will to learn and career goals, take the next path suiting your choice. The time required to become familiar with all the concepts will vary depending on the career choice. The contribution of domain knowledge is again another benefit you bring to the organization, often lacking in people with technical backgrounds. So don't assume you are lagging behind.

Machine Learning and Interview Kickstart: Final Thoughts

Machine Learning career is widely chosen among the candidates due to increasing opportunities and trends. The advancements have fascinated so many professionals that the previous background is no bar now.

Helping you through the career switch process from scratch, our guidance helps to brush up your skills while preparing you for interviews from dream companies of candidates. We have recruiters on board to help you in the endeavor while providing personalized guidance. To learn more about our offerings or how to start your transition process, feel free to connect with our executives for a walkthrough. Register for our free webinar and gather insights!

Frequently Asked Questions on Machine Learning Engineer Career

Q1. Is Machine Learning Oversaturated 2023?

Ans. With the above-mentioned data indicating thousands of jobs in September 2023, the signs of oversaturation for career seekers are nowhere to be seen.

Q2. Why are Machine Learning engineers paid so much?

Ans. Machine Learning engineers are well paid owing to high demand, the contribution of services to the world, complexity and continuous learning.

Q3. Will Machine Learning replace coding?

Ans. Machine learning is capable of task automation. However, coding is essential for trading and the creation of models. The replacement is still a task to achieve.

Q4. What is the difference between AI and ML engineers?

Ans. AI engineering focuses on multiple aspects, including machine learning. At the same time, ML engineers focus on the development, training and deployment of ML models.

Q5. How long does it take to become a Machine Learning Engineer?

Ans. The time required to become a Machine Learning Engineer depends on one’s current career stage and path towards Machine Learning. It also depends on their learning curve and ability to apply and showcase their skills.

Q6. What is the difference between a Data Scientist and a Machine Learning Engineer?

Ans. Data scientists focus on knowledge and data extraction through different tasks like data analysis. ML and statistics. ML engineers work on ML models for specific applications like task automation and others.

Author

Utkarsh Sahu

Director, Category Management @ Interview Kickstart || IIM Bangalore || NITW.

Attend our Free Webinar on How to Nail Your Next Technical Interview

Register for our webinar

How to Nail your next Technical Interview

1
Enter details
2
Select webinar slot
By sharing your contact details, you agree to our privacy policy.
Step 1
Step 2
Congratulations!
You have registered for our webinar
check-mark
Oops! Something went wrong while submitting the form.
1
Enter details
2
Select webinar slot
Step 1
Step 2
check-mark
Confirmed
You are scheduled with Interview Kickstart.
Redirecting...
Oops! Something went wrong while submitting the form.
All Blog Posts
entroll-image